Time allowed: 4 hours
NO calculators are to be used.
Each question is worth seven points.

Question 1
Determine all sequences of real numbers a_1, a_2, . . . , a_{1995} which satisfy:
2\sqrt{a_n-(n-1)} \geq a_{n+1}-(n-1); for n = 1, 2,..., 1994;
and 2 \sqrt{a_{1995}-1994} \geq a_1+1

Question 2
Let a_1, a_2, . . . an be a sequence of integers with values between 2 and 1995 such that:
(i) Any two of the a_i ’s are realtively prime,
(ii) Each a_i is either a prime or a product of primes.
Determine the smallest possible values of n to make sure that the sequence will contain a
prime number.

Question 3
Let PQRS be a cyclic quadrilateral such that the segments PQ and RS are not parallel.
Consider the set of circles through P and Q, and the set of circles through R and S.
Determine the set A of points of tangency of circles in these two sets.

Question 4
Let C be a circle with radius R and centre O, and S a fixed point in the interior of C. Let AA' and BB' be perpendicular chords through S. Consider the rectangles SAMB, SBN'A', SA'M'B', and SB'NA. Find the set of all points M, N', M', and N when A moves around the whole circle.
Question 5
Find the minimum positive integer k such that there exists a function f from the set Z of all integers to {1, 2,...,k} with the property that f(x) \neq f(y) whenever |x-y| \in {5,7,12}.


About វិចិត្រ

ជា​ខ្មែរ​ម្នាក់ ជា​មនុស្ស​ម្នាក់ ធម្មតា​ដូច​មនុស្ស​ឯ​ទៀត​ដែរ
អត្ថបទនេះត្រូវបាន​ផ្សាយក្នុង គណិតវិទ្យា​។ ប៊ុកម៉ាក តំណភ្ជាប់​អចិន្ត្រៃ​យ៍​


Fill in your details below or click an icon to log in:


អ្នក​កំពុង​បញ្ចេញ​មតិ​ដោយ​ប្រើ​គណនី របស់​អ្នក​។ Log Out /  ផ្លាស់ប្តូរ )

Google+ photo

អ្នក​កំពុង​បញ្ចេញ​មតិ​ដោយ​ប្រើ​គណនី Google+ របស់​អ្នក​។ Log Out /  ផ្លាស់ប្តូរ )

រូប Twitter

អ្នក​កំពុង​បញ្ចេញ​មតិ​ដោយ​ប្រើ​គណនី Twitter របស់​អ្នក​។ Log Out /  ផ្លាស់ប្តូរ )

រូបថត Facebook

អ្នក​កំពុង​បញ្ចេញ​មតិ​ដោយ​ប្រើ​គណនី Facebook របស់​អ្នក​។ Log Out /  ផ្លាស់ប្តូរ )


កំពុង​ភ្ជាប់​ទៅ​កាន់ %s