លំហាត់ ៧



មាតិកា \ គណិតវិទ្យា\…


គេអោយ a,b,c ជារង្វាស់ជ្រុងនៃត្រីកោណមួយ។ ចូរបង្ហាញថា
3\left( {ab + bc + ca} \right) \le \left( {a + b + c} \right)^2 < 4\left( {ab + bc + ca} \right)

ចំលើយ
វិសមភាពខាងឆ្វេងសមមូលនឹង
\left( {a + b + c} \right)^2 - 3\left( {ab + bc + ca} \right) \ge 0
\Leftrightarrow {1 \over 2}\left[ {\left( {a - b} \right)^2 + \left( {b - c} \right)^2 + \left( {c - a} \right)^2 } \right] \ge 0 ពិត។

វិសមភាពនេះទៅជាសមភាព បើ a=b=c និងច្រាសមកវិញ។
គួរសំគាល់ថា វិសមភាពនេះពិតចំពោះគ្រប់ a,b,c ទោះបីមិនមែន ជារង្វាស់ជ្រុងនៃត្រីកោណក៏ដោយ។

ដោយ a,b,c ជារង្វាស់ជ្រុងនៃត្រីកោណ នោះយើងមាន
\left| {a - b} \right| < c,\left| {b - c} \right| < a និង \left| {c - a} \right| < b

ដូច្នេះ
4\left( {ab + bc + ca} \right) - \left( {a + b + c} \right)^2
= c^2 - \left( {a - b} \right)^2 + a^2 - \left( {b - c} \right)^2 + b^2 - \left( {c - a} \right)^2 > 0


មាតិកា \ គណិតវិទ្យា\…

Advertisements

About វិចិត្រ

ជា​ខ្មែរ​ម្នាក់ ជា​មនុស្ស​ម្នាក់ ធម្មតា​ដូច​មនុស្ស​ឯ​ទៀត​ដែរ
This entry was posted in គណិតវិទ្យា​ and tagged . Bookmark the permalink.

ឆ្លើយ​តប

Fill in your details below or click an icon to log in:

ឡូហ្កូ WordPress.com

អ្នក​កំពុង​បញ្ចេញ​មតិ​ដោយ​ប្រើ​គណនី WordPress.com របស់​អ្នក​។ Log Out / ផ្លាស់ប្តូរ )

រូប Twitter

អ្នក​កំពុង​បញ្ចេញ​មតិ​ដោយ​ប្រើ​គណនី Twitter របស់​អ្នក​។ Log Out / ផ្លាស់ប្តូរ )

រូបថត Facebook

អ្នក​កំពុង​បញ្ចេញ​មតិ​ដោយ​ប្រើ​គណនី Facebook របស់​អ្នក​។ Log Out / ផ្លាស់ប្តូរ )

Google+ photo

អ្នក​កំពុង​បញ្ចេញ​មតិ​ដោយ​ប្រើ​គណនី Google+ របស់​អ្នក​។ Log Out / ផ្លាស់ប្តូរ )

កំពុង​ភ្ជាប់​ទៅ​កាន់ %s